SARS-CoV-2 Vaccines General Information

A Review of Pertinent Drug Information for SARS-CoV-2

Jeannette Bouchard, PharmD Infectious Diseases/Antimicrobial Stewardship Clinical Pharmacy Specialist WakeMed Health & Hospital System, Raleigh, NC jebouchard@wakemed.org @jlbouchard001 February 16, 2020

Immunology Refresher

SIDP SOCIETY OF DISEASES F

APC: antigen-presenting cells

5

Virus released from cell after assembly

Antigen-presenting cells engulf virus

T-helper cells are activated by viral peptides displayed on antigen-presenting cells

Cytotoxic T cells enabled to identify and destroy infected cells

B cells enabled to create antibodies that block virus from infecting cells

Callaway E. Nature. 2020. 580:576-577 Created with Biorender.com

Previous Vaccine Timeline

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

IND: Investigational new drug BLA: biologics license application Krammer, F. Nature. 2020. 586:515–527 Funk CD, et al. Front Pharmacol. 2020. 11:937

SARS-CoV-2 Vaccine Timeline

SARS-CoV-2 Vaccine Development

EUA: Emergency Use Authorization

SARS-CoV-2 Vaccine Platforms

Traditional approaches

Recently licensed approaches

Novel approaches

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS Live attenuated or whole inactivated vaccines

Genetic-code vaccines

Viral vector vaccines

Protein-based vaccines

Current SARS-CoV-2 Vaccine Landscape By Platform

Candidate Vaccines as of February 12, 2021

- Protein subunit
- Viral Vector (non-replicating)
- DNA
- Inactivated Virus
- RNA
- Viral Vector (replicating)
- Virus Like Particle
- VVr + Antigen Presenting Cell
- Live Attenuated Virus
- VVnr + Antigen Presenting Cell

VVr: Viral Vector replicating VVnr: Viral Vector non-replication

×SIDP

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

	Live Attenuated	Inactivated	Viral vector Protein-subunit		Genetic-code
MOA	 Weakened version of virus that replicates to extent without causing disease 	 Inactivated version of actual virus grown and chemically inactivated 	 Based on another virus with spike protein which has been disabled from replication 	• Viral subunits expressed via various cell lines to stimulate immune response	 Uses DNA or RNA to create antigens for immune system to target
Pros	 Immune response has broad target range Given intranasally Familiar, proven technology 	 Immune response has broad target range Familiar, proven technology 	 Produced without handling live virus Familiar, proven technology Good immune response 		 Easy and quick to design Large scale production
Cons	 Time-consuming to grow Specific facilities for production Safety concerns 	 Time-consuming to grow Specific facilities for production 	 Partial neutralization by existing immunity Prime-boost regimens 	 Spike protein hard to express RBD-based prone to impact of antigenic drift 	 Relatively new technology Stability issues
Vaccine Candidates	CodagenixIndian Immunologicals Ltd.	• Sinovac • Sinopharm	 AstraZeneca CanSino Biologics Johnson & Johnson 	NovavaxAdaptVac	ModernaPfizer-BioNtech
	SOCIETY OF INFECTIO	US STS			

Callaway E. Nature. 2020. 580:5, 6, 577 Krammer F. Nature. 2020. 586:516-27

MOA: Mechanism of Action

	Live Attenuated	Inactivated	Viral vector	Viral vector Protein-subunit	
MOA	 Weakened version of virus that replicates to extent without causing disease 	 Inactivated version of actual virus grown and chemically inactivated 	 Based on another virus with spike protein which has been disabled from replication 	 Viral subunits expressed via various cell lines to stimulate immune response 	 Uses DNA or RNA to create antigens for immune system to target
Pros	 Immune response has broad target range Given intranasally Familiar, proven technology 	 Immune response has broad target range Familiar, proven technology 	 Produced without handling live virus Familiar, proven technology Good immune response 	 Produced without handling live virus Experience producing 	 Easy and quick to design Large scale production
Cons	 Time-consuming to grow Specific facilities for production Safety concerns 	 Time-consuming to grow Specific facilities for production 	 Partial neutralization by existing immunity Prime-boost regimens 	 Spike protein hard to express RBD-based prone to impact of antigenic drift 	 Relatively new technology Stability issues
Vaccine Candidates	 Codagenix Indian Immunologicals Ltd. 	SinovacSinopharm	 AstraZeneca CanSino Biologics Johnson & Johnson 	NovavaxAdaptVac	 Moderna Pfizer-BioNtech
	SIDP SOCIETY OF INFECTIO	US ITS			

	Live Attenuated	Inactivated	Viral vector	Protein-subunit	Genetic-code			
MOA	 Weakened version of virus that replicates to extent without causing disease 	 Inactivated version of actual virus grown and chemically inactivated 	 Based on another virus with spike protein which has been disabled from replication 	 Viral subunits expressed via various cell lines to stimulate immune response 	 Uses DNA or RNA to create antigens for immune system to target 			
Pros	 Immune response has broad target range Given intranasally Familiar, proven technology 	 Immune response has broad target range Familiar, proven technology 	 Produced without handling live virus Familiar, proven technology Good immune response 	 Produced without handling live virus Experience producing 	 Easy and quick to design Large scale production 			
Cons	 Time-consuming to grow Specific facilities for production Safety concerns 	 Time-consuming to grow Specific facilities for production 	 Partial neutralization by existing immunity Prime-boost regimens 	 Spike protein hard to express RBD-based prone to impact of antigenic drift 	 Relatively new technology Stability issues 			
Vaccine Candidates	 Codagenix Indian Immunologicals Ltd. 	• Sinovac • Sinopharm	 AstraZeneca CanSino Biologics Johnson & Johnson 	NovavaxAdaptVac	ModernaPfizer-BioNtech			
SOCIETY OF INFECTIOUS DISEASES PHARMACISTS								

	Live Attenuated	Inactivated	Viral vector	Protein-subunit	Genetic-code
MOA	 Weakened version of virus that replicates to extent without causing disease 	 Inactivated version of actual virus grown and chemically inactivated 	 Based on another virus with spike protein which has been disabled from replication 	• Viral subunits expressed via various cell lines to stimulate immune response	 Uses DNA or RNA to create antigens for immune system to target
Pros	 Immune response has broad target range Given intranasally Familiar, proven technology 	 Immune response has broad target range Familiar, proven technology 	 Produced without handling live virus Familiar, proven technology Good immune response 	 Produced without handling live virus Experience producing 	 Easy and quick to design Large scale production
Cons	 Time-consuming to grow Specific facilities for production Safety concerns 	 Time-consuming to grow Specific facilities for production 	 Partial neutralization by existing immunity Prime-boost regimens 	 Spike protein hard to express RBD-based prone to impact of antigenic drift 	 Relatively new technology Stability issues
Vaccine Candidates	 Codagenix Indian Immunologicals Ltd. 	SinovacSinopharm	 AstraZeneca CanSino Biologics Johnson & Johnson 	NovavaxAdaptVac	ModernaPfizer-BioNtech
	SIDP SOCIETY OF INFECTIO	US STS			

MOA: Mechanism of Action **RBD:** Receptor binding domain

	Live Attenuated	Inactivated	Viral vector	Protein-subunit	Genetic-code	
MOA	 Weakened version of virus that replicates to extent without causing disease 	 Inactivated version of actual virus grown and chemically inactivated 	 Based on another virus with spike protein which has been disabled from replication 	• Viral subunits expressed via various cell lines to stimulate immune response	 Uses DNA or RNA to create antigens for immune system to target 	
Pros	 Immune response has broad target range Given intranasally Familiar, proven technology 	 Immune response has broad target range Familiar, proven technology 	Immune response has broad target range Familiar, proven technology• Produced without handling live virus • Familiar, proven technology • Good immune response• Produced without handling live virus • Experience producing			
Cons	 Time-consuming to grow Specific facilities for production Safety concerns 	 Time-consuming to grow Specific facilities for production 	 Partial neutralization by existing immunity Prime-boost regimens 	 Spike protein hard to express RBD-based prone to impact of antigenic drift 	 Relatively new technology Stability issues 	
Vaccine Candidates	 Codagenix Indian Immunologicals Ltd. 	SinovacSinopharm	 AstraZeneca CanSino Biologics Johnson & Johnson Novavax AdaptVac 		ModernaPfizer-BioNtech	
\mathbf{X}		US				

Callaway E. Nature. 2020. 580:576:577

Krammer F. Nature. 2020. 586:516-27

DISEASES PHARMACISTS

Pertinent SARS-CoV-2 Vaccine Candidates

Candidate Name	Vaccine Platform	Sponsor	Clinical Trial Phase	Dosing	Storage	Cost
BNT162b2	mRNA-based	Pfizer-BioNtech	EUA	2 doses (d0, d21)	-70°C	\$20/dose
mRNA-1273	mRNA-based	Moderna	EUA	2 doses (d0, d28)	-20°C	\$32-37/dose
AZD1222	Non-replicating viral vector	AstraZeneca	Phase 3	2 doses (d0, d28)	2-8°C	\$3-4/dose
Ad26.COV2.S	Non-replicating viral vector	Johnson&Johnson	Phase 3	1 dose	2-8°C	\$10/dose
NVX-CoV2373	Recombinant protein	Novavax	Phase 3	2 doses (d0, d21)	2-8°C	\$16/dose

EUA: Emergency Use Authorization

World Health Organization. Draft landscape of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draftlandscape-of-covid-19-candidate-vaccines. Accessed Dec. 15, 2020

The New York Times. Coronavirus Vaccine Tracker.https://www.nytimes.com/interactive/2020/science/coronavirus-vaccinetracker.html Accessed Dec. 15, 2020

Biospace. Comparing COVID-19 Vaccines: Timeslines, Types and prices. https://www.biospace.com/article/comparing covid-19-vaccines-pfizer-biontech-moderna-astrazeneca-oxford-j-and-j-russia-s-sputnik-v/ Accessed Dec 15, 2020

Current and Future Challenges

Under-represented populations

• Pregnant and breastfeeding women, immunocompromised, diverse race and ethnicities

Vaccine Hesitancy

Willingness to get COVID-19 vaccination ~63%

Phase 3 enrollment and long-term outcomes

• Many frontline workers involved in phase 3 trials \rightarrow impact long term outcomes

Equitable Administration

• On top of number of vaccines, storage requirements and cost will significantly impact certain areas of the world

Gallup. Willingness to get COVID-19 Vaccine ticks up to 63% in 35. https://news.gallup.com/poll/327425/willingness-covid-vaccine ticks.aspx Accessed Dec. 15 2020

EUA Vaccine FAQs

	Persons with a History of SARS-CoV-2 Infection		ersons with Known Persons Current SARS-CoV-2 Receiv Infection Antibo		ns Previously ved Passive ody Therapy		Immunocompromised Persons					
	• Vaco rega infe	cination ardless of prior ction	• Def unt isol diso	er va il rec atio cont	accination covery and n inued (No data Defer va at least avoid va interfere 	accii 90 (accii enc	nation for days to ne e		 No Data Can receive vaccination otherwise contraindica 	unless ated
		Pregnant or Breas Persons	stfeeding		Public Recomme	Hea enda	lth ations		Contr	ain	dications	
¥S	ID	 No data May choose to by vaccinated Discussion with healthcare proves SOCIETY OF INFECTIOUS DISEASES PHARMACISTS 	be ider		 Protection r immediate o Continue to current dista protection g 	or 1 foll anci guid	00% ow ng and ance		 Severe reprevious Immedia previous or any or compon Immedia reaction 	eac do ate do f its ent ate to	tion after se of vaccine reaction to se of vaccine s allergic polysorbate	

EUA: Emergency Use Authorization PEG: polyethylene glycol

https://www.cdc.gov/vaccines/covid-19/downloads/pfizer-biontech-vaccine-what-Clinicians-need-to-know.pdf

110

Registries

• Registries for Vaccine and Breastfeeding

- Human Breastmilk Study
 - Icahn School of Medicine at Mount Sinai
 - Investigator: Dr. Recbecca L.R. Powell
 - To sign up email: <u>covid19humanmilkstudy@gmail.com</u>
- Mommy's Milk Research Study
 - University of California at San Diego
 - To sign up email: milkstudy@health.ucsd.edu
- Registries for Pregnancy
 - C-VIPER
 - <u>https://corona.pregistry.com/</u>
 - Registration open February 8, 2021 → register online (NCT NCT04705116)

NEW! NCT04754594 → phase 2/3 randomized placebocontrolled trial for BNT162b2 in pregnant women

V-Safe After Vaccination

- V-safe is a smartphone app that uses texts and surveys to provide check-ins following vaccination
 - Easiest way to tell the CDC of any side effects that are encountered following vaccination
 - It will also set a reminder for the 2nd vaccination in the series!
- You will need a smart phone and your SARS-CoV-2 vaccination information to register and use v-safe
- Instructions can be found at:
 - <u>https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html</u>

V-Safe After Vaccination

	Pfizer-BioNTech	Moderna	All COVID-19 vaccines
People receiving 1 or more doses in the United States*	12,153,536	9,689,497	21,843,033
Registrants completing at least 1 v-safe health check-in [†]	997,042	1,083,174	2,080,216
Pregnancies reported to v-safe	8,633	6,498	15,131
*Data as of 1/24/2021			

[†]Data as of 1/20/2021

- Most frequently reported reactions following vaccination: pain, fatigue, headache, myalgia
 - Rates mostly consistent across both vaccines, numerically Moderna slightly higher reactions reported

v-safe after vaccination health checker

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-01/06-COVID-Shimabukuro.pdf

Safety Updates

- Reports of deaths following COVID-19 vaccination in community dwelling adults aged <65 years
 - Expected sudden cardiac death count: 168 deaths (based on estimated background rate of sudden cardiac death = 29.6/100,000 person-years)
 - Reported VAERS sudden cardiac death count following COVID vaccination: 18 deaths
- Reports of deaths following COVID-19 vaccination in LTCF residents to VAERS
 - Assessment after excluding residents with positive SARS-CoV-2 test within 20 days prior 7day post vaccination window
 - Mortality lower among vaccinated vs unvaccinated within the same facilities
 - Short term mortality likely unrelated to COVID-19 vaccination in skilled nursing facility residents

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-01/06-COVID-Shimabukuro.pdf

Useful Links

- CDC Website
 - <u>https://www.cdc.gov/vaccines/covid-19/index.html</u>
- CDC Vaccine Communication Toolkit
 - <u>https://www.cdc.gov/vaccines/covid-19/health-systems-communication-toolkit.html</u>
- CDC Guidance for Infection Prevention Considerations Post Vaccination
 - <u>https://www.cdc.gov/coronavirus/2019-ncov/hcp/post-vaccine-considerations-healthcare-personnel.html</u>
- COVID-19 Real-Time Learning Network (CDC and IDSA)
 - <u>https://www.idsociety.org/covid-19-real-time-learning-network/</u>

- 1. Get Vaccinated
- 2. Tell Others Why
- 3. Build the Confidence

SARS-CoV-2 Vaccines General Information

A Review of Pertinent Drug Information for SARS-CoV-2

Jeannette Bouchard, PharmD Infectious Diseases/Antimicrobial Stewardship Clinical Pharmacy Specialist WakeMed Health & Hospital System, Raleigh, NC jebouchard@wakemed.org @jlbouchard001 February 16, 2020

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

