Corticosteroids

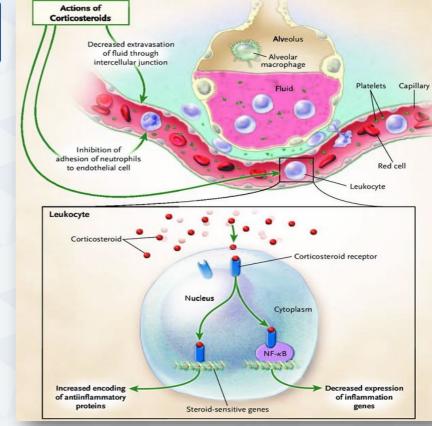
A Review of Pertinent Drug Information for SARS-CoV-2

Khalid Eljaaly, PharmD, MS, BCPS, BCIDP

Assistant Professor/ID Pharmacist, King Abdulaziz University, Jeddah, Saudi Arabia Honorary Research Fellow, University of Arizona, Tucson, AZ, USA

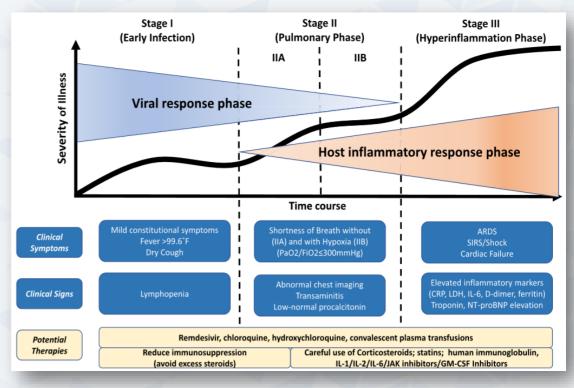
@khalideljaaly

Data as of June 24, 2020


Objectives

- Discuss the mechanism of action and safety of corticosteroids
- Explain the potential benefit and harm of using corticosteroids for COVID-19
- Evaluate relevant literature for role of corticosteroids in COVID-19

Mechanism of Action

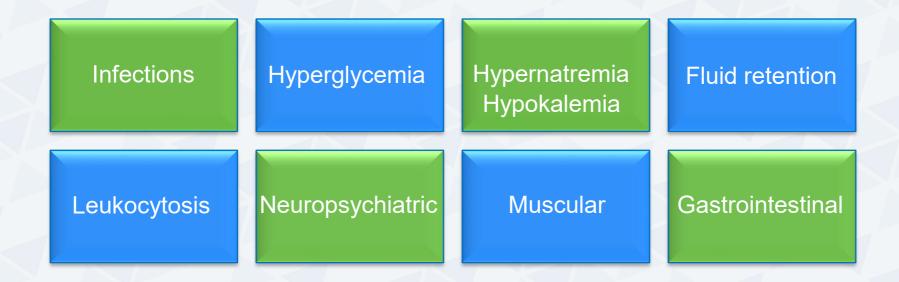

- Anti-inflammatory/Immunomodulatory
 - Effects on gene expression
 - Glucocorticoid receptors (GR) binding to glucocorticoid-responsive elements
 - GR interactions with transcription factors (activator protein 1 & NF-kβ)
 - Effects of GR on 2nd-messenger cascades

Stages of COVID-19 Disease Progression

- Stage I: might not be beneficial and could even enhance viral replication?
- **Stage II**: potentially in case of worsening hypoxia?
- Stage III: greatest benefit?

Dosing

SCCM Guidelines


- Acute Respiratory Distress Syndrome (ARDS)
 - Early ARDS (up to day 7 of onset): 1 mg/kg/day (methylprednisolone or equivalent doses)
 - Late ARDS (after day 6 of onset): 2 mg/kg/day
 - Follow treatment with slow taper over 6-14 days
- Refractory Septic Shock
 - Low-dose (hydrocortisone IV 200 mg/day)

Recovery Trial

Dexamethasone 6 mg/day X 10 days

Adverse Drug Reactions

Solu-Medrol Package Insert. Last revised July 24, 2018. http://labeling.pfizer.com/ShowLabeling.aspx?id=873 Adverse Reactions. Lexicomp. Wolters Kluwer Health Inc. Riverwoods, II. Available at: http://online.lexi.com. Accessed May 10, 2020.

Drug-Drug Interactions

- Additive
- Metabolic
 - CYP450 3A4 inhibitors (including protease inhibitors) and inducers

Mortality in ARDS: Meta-analysis of RCTs

	Corticoste	roids	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
⊔µ 2012	2	12	7	14	3.0%	0.33 [0.08, 1.31]	
Meduri 2007	15	63	12	28	12.6%	0.56 [0.30, 1.03]	
Rezk 2013	0	18	3	9	0.7%	0.08 [0.00, 1.32]	
Steinberg 2006	26	89	26	91	19.7%	1.02 [0.65, 1.62]	+
Tongyoo 2016	34	98	40	99	26.8%	0.86 [0.60, 1.23]	
Villar 2020	33	139	50	138	26.0%	0.66 [0.45, 0.95]	-
Zhao 2014	9	24	13	29	11.3%	0.84 [0.43, 1.61]	
Total (95% CI)		443		408	100.0%	0.75 [0.59, 0.95]	•
Total events	119		151				
Heterogeneity: $Tau^2 = 0.02$; $Chl^2 = 7.69$, $df = 6$ (P = 0.26); $l^2 = 22\%$					6); $t^2 = 23$	2%	0.01 0.1 1 10 100
Test for overall effect: $Z = 2.36$ (P = 0.02)							0.01 0.1 1 10 100 Favours corticosteroids Favours control

Mortality in ARDS: Meta-analysis of RCTs

	Corticoste	roids	Contr	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
1.8.1 Timing of corti	costeroid th	erapy <	7 days				
⊔u 2012	2	12	7	14	4.1%	0.33 [0.08, 1.31]	
Meduri 2007	15	63	12	28	15.4%	0.56 [0.30, 1.03]	
Rezk 2013	0	18	3	9	1.0%	0.08 [0.00, 1.32]	+
Tongyoo 2016	34	98	40	99	28.8%	0.86 [0.60, 1.23]	-■
Villar 2020	33	139	50	138	28.1%	<u>0.66 [0.45, 0.95]</u>	- - -
Subtotal (95% CI)		330		288	77.4%	0.66 [0.49, 0.91]	◆
Total events	84		112				
1.8.2 Timing of corti	costeroid th	erapy >	7 days 26	91	22.6%	1.02 [0.65, 1.62]	
Subtotal (95% CI)	20	89	20	91	22.6%	1.02 [0.65, 1.62]	<u> </u>
Total events	26		26				Ť
Heterogeneity: Not ap Test for overall effect:		- 0.92	,				
Total (95% CI)		419		379	100.0%	0.73 [0.55, 0.97]	•
Total events Heterogeneity: Tau² =	110 0.04; Ch ² •	- 7.59.	138 df = 5 (P	- 0.1	8); i² = 34	4%	h
Test for overall effect: Test for subgroup diff	Z = 2.18 (P	-0.03)		_		0.01 0.1 1 10 100 Favours corticosteroid Favours control

Duration of MV in ARDS: Meta-analysis of RCTs

	Corticosteroids	Control	Mean difference	Mean difference
Study or subgroup	Mean SD Total	Mean SD Total	Weight, % IV, Random, 95% Cl	IV, Random, 95% Cl
Meduri, 2007	5.25 1.46 63	11.1 3.9 28	21.9 -5.85 (-7.34, -4.36)	
Rezk, 2013	10.6 4.4 18	20.3 1.9 9	20.1 -9.70 (-12.08, -7.32)	
Tongyoo, 2016	11.8 7.8 98	13.9 9 99	20.1 -2.10 (-4.45, 0.25)	-
Villar, 2020	14.3 13.3 139	20.2 14 138	18.0 -5.90 (-9.12, -2.68)	
Zhao, 2014	10.5 4.6 24	11.6 4.6 29	19.8 –1.10 (–3.59, 1.39)	-
Total (95% CI)	342	303	100 -4.93 (-7.81, -2.06)	-
		f = 4 (P < 0.00001);	12 = 81%	-10 -5 0 5 10
Test for overall effect	et: $Z = 3.37 (P = 0.0)$	JUU8J	F	Favors (corticosteroids) Favors (control)

Ventilator-Free Days in ARDS: Meta-analysis of RCTs

	Cort	icoste	roids		Contro	ol		Mean difference		N	1ean dif	fference		
Study or subgroup	Mean	SD	Total	Mear	n SD	Total	Weight, %	IV, Random, 95% CI		IV, I	Randon	n, 95% C	l	
Liu, 2012	13.9	11.3	12	12.8	11.3	14	3.3	1.10 (-7.61, 9.81)	-		-			
Meduri, 2007	16.5	10.1	63	8.7	10.2	28	11.1	7.80 (3.27, 12.33)						
Steinberg, 2006	11.2	9.4	89	6.8	8.5	91	26.9	4.40 (1.78, 7.02)				_	-	
Tongyoo, 2016	12	9.7	98	9.7	10	99	25.1	2.30 (-0.45, 5.05)						
Villar, 2020	12.3	9.9	139	7.5	9	138	33.6	4.80 (2.57, 7.03)				-	-	
Total (95% CI)			401			370	100	4.28 (2.67, 5.88)				•		
Heterogeneity: T ² =	: 0.69; x	$x^2 = 5$.04; df	= 4 (P =	= 0.28	$3); l^2 =$	21%		10				- 10	
Test for overall effect	ct: $Z =$	5.23 (P < 0.0	0001)					-10	-5	0	5	10	
								Fa	vors (con	trol)		Favors	(corticoster	roids)

Mortality in Viral ARDS: Meta-analysis of Observational Studies

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Brun-Buisson 2011	0.9517	0.3066	21.5%	2.59 [1.42, 4.72]	-
Cao 2016	0.6152	0.3849	19.1%	1.85 [0.87, 3.93]	 •
Kim 2011	0.5878	0.4892	16.2%	1.80 [0.69, 4.70]	+•
Li 2017	-0.4005	0.1919	24.6%	0.67 [0.46, 0.98]	
Martin-Loeches 2011	0.0953	0.4023	18.6%	1.10 [0.50, 2.42]	-
Total (95% CI)			100.0%	1.40 [0.76, 2.57]	•
Heterogeneity: Tau ² = 0 Test for overall effect: 2			P = 0.00	2); 1² = 77%	0.01 0.1 1 10 100 Corticosteroids Control

Mortality in Viral Pneumonia: Meta-analysis of Observational Studies

Study or Subgroup log[Odds Ratio] SE Weight IV, Random, 95% CI IV, Random, 95% CI	
1.1.1 Influenza	
Delaney 2016 0.6152 0.2561 8.8% 1.85 [1.12, 3.06]	
Delgado-Rodtriguez 2012 1.2149 0.4518 7.6% 3.37 [1.39, 8.17]	
Jung 2011 1.1282 0.4187 7.8% 3.09 [1.36, 7.02] ————	
Kim 2011 0.7885 0.3872 8.0% 2.20 [1.03, 4.70]	
Liem 2009 1.4134 0.6543 6.2% 4.11 [1.14, 14.82]	_
Linko 2011 1.1939 0.9628 4.4% 3.30 [0.50, 21.78]	
Tsai 2020 1.6134 0.3786 8.0% 5.02 [2.39, 10.54] ——•	-
Xi 2010 1.3002 0.6685 6.1% 3.67 [0.99, 13.60]	_
Subtotal (95% CI) 56.7% 2.76 [2.06, 3.69]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 6.13$, $df = 7$ (P = 0.52); $I^2 = 0\%$	
Test for overall effect: Z = 6.81 (P < 0.00001)	
1.1.2 Corona/SARS/MERS	
Alfaraj 2019 1.3455 0.3457 8.2% 3.84 [1.95, 7.56] ———	
Alghamdi 2016 1.0716 1.5877 2.3% 2.92 [0.13, 65.59]	
Arabi 2017 -0.4943 0.1904 9.1% 0.61 [0.42, 0.89]	
Auyeung 2005 3.0301 1.4122 2.7% 20.70 [1.30, 329.63]	
Chen 2006 -2.4889 1.2617 3.2% 0.08 [0.01, 0.98] +	
Yam 2007 HC 0 0.5657 6.8% 1.00 [0.33, 3.03] — — — —	
Yam 2007 MP -1.3863 0.6495 6.2% 0.25 [0.07, 0.89]	
Yam 2007 P -1.772 0.885 4.8% <u>0.17 [0.03, 0.96]</u>	
Subtotal (95% CI) 43.3% 0.83 [0.32, 2.17]	
Heterogeneity: $Tau^2 = 1.24$; $Chi^2 = 38.12$, $df = 7 (P < 0.00001)$; $I^2 = 82\%$	
Test for overall effect: Z = 0.37 (P = 0.71)	
Total (95% CI) 100.0% 1.76 [1.03, 3.03]	
Heterographity Tou? 0.80; Chi2 75 61 df 15 (B + 0.00001); I2 80%	
Test for suprell effect: 7 3 05 (B 0.04)	'O 100'
Test for overall effect: $Z = 2.08$ ($P = 0.04$) Test for subgroup differences: $Chi^2 = 5.48$, $df = 1$ ($P = 0.02$), $I^2 = 81.8\%$ Corticosteroids Control	

Trial	Trial Design	N	Corticosteroids	Outcomes
Wu C, et al	Retrospective cohort study in China	N = 84 with ARDS	Methylprednisolone No specific data on dose or duration	Reduced risk of death (HR, 0.38; 95% CI, 0.20-0.72; P=0.003)

Trial	Trial Design	N	Corticosteroids	Outcomes
Wang Y, et al	Retrospective cohort study in China	N = 46 with severe COVID-19 pneumonia	Methylprednisolone 1-2 mg/kg/day X 5-7 days	SpO2 improvement: 8 days vs. 14 days; P < 0.001. Need for MV: 11.5% vs. 35%; P = 0.05. Hospital LOS: 14 days vs. 22 days; P < 0.001. ICU LOS: 8 days vs. 15 days; P < 0.001. No difference in deaths: 2 vs. 1; P=0.714.

Trial	Trial Design	N	Corticosteroids	Outcomes
Lu X, et al	Retrospective cohort study in China	N = 244 critically ill COVID-19 (ARDS or sepsis with acute organ dysfunction)	Methylprednisolone 40 mg/day or equivalent of dexamethasone X 8 days	28-day mortality in multivariate analysis: aOR, 1.05; 95% CI, 0.15-7.46.
		N = 62 propensity score matched		28-day mortality in PSM: 39% vs. 16%; P=0.09.

Trial	Trial Design	N	Corticosteroids	Outcomes
Cruz AF, et al	Retrospective cohort study in Spain	N = 463 propensity score matched patients with COVID-19 pneumonia with ARDS and/or hyperinflammatory syndrome	1 mg/kg/day (methylprednisolone or equivalent) or pulses (78% vs. 22%) Unclear duration	In-hospital mortality: 13.9% vs. 23.9%; HR 0.51; 95 %CI, 0.27-0.96, p=0.044.

Trial	Trial Design	N	Corticosteroids	Outcomes
Fadel R, et al	Pre-test, post- test quasi- experimental study in United States	N = 213 with moderate to severe COVID-19 pneumonia requiring respiratory support	Methylprednisolone 0.5-1 mg/kg/day X 3 days	Composite endpoint (escalation to ICU, requiring MV, & mortality): 34.9% vs. 54.3%; p=0.005. After Adj: aOR, 0.41; 95% CI, 0.22 – 0.77. Mortality:13.6% vs. 26.3%; p=0.024 Requiring MV: 21.7% vs. 36.6%; p=0.025 Escalation to ICU: 27.3% vs. 44.3%; p=0.017. ARDS: 26.6% vs. 38.8%; p=0.04. Hospital LOS: 5 days vs. 8 days; p < 0.001.

Trial	Trial Design	N	Corticosteroids	Outcomes
Sun F, et al	Retrospective cohort study in China	N = 139 with COVID-19 of any severity	Methylprednisolone or dexamethasone ≤0·5-1 mg/kg/day methylprednisolone or equivalent X 7 days	Clinical deterioration during the whole hospital stay: aOR, 3.0; 95% CI, 1.2-7.8. Deterioration within 72h of 1st S/S: aOR, 1; 95% CI, 0.2-6.3.

Trial	Trial Design	N	Corticosteroids	Outcomes
Yuan M, et al	Retrospective cohort study in China	N = 132 with non- severe COVID-19 pneumonia N = 70 propensity score matched	Methylprednisolone 50 mg/day X 11 days	CT imaging score on day 7: 8.6 days vs. 12.0 days; P=0.046. Others (progression to severe cases, LOS, viral shedding duration, & fever time): no significant differences. All outcomes in PSM: No significant differences

First RCT: Recovery Trial

Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19

16 June 2020

Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on dexamethasone, 16 June 2020

Table 2: Effect of allocation to dexamethasone on main study outcomes

	Treatment allocation			
	Dexamethasone (n=2104)	Usual care (n=4321)	RR (95% CI)	p-value
Primary outcome:				
28-day mortality	454 (21.6%)	1065 (24.6%)	0.83 (0.74-0.92)	<0.001
Secondary outcomes:				
Discharged from hospital within 28 days	1360 (64.6%)	2639 (61.1%)	1.11 (1.04-1.19)	0.002
Receipt of invasive mechanical ventilation or death*	425/1780 (23.9%)	939/3638 (25.8%)	0.91 (0.82-1.00)	0.049
Invasive mechanical ventilation	92/1780 (5.2%)	258/3638 (7.1%)	0.76 (0.61-0.96)	0.021
Death	360/1780 (20.2%)	787/3638 (21.6%)	0.91 (0.82-1.01)	0.07

Figure 2: Effect of allocation to dexamethasone on 28-day mortality by level of respiratory support received at randomization

Respiratory support at randomization	Dexamethasone	Usual care			RR (95% CI)
No oxygen received	85/501 (17.0%)	137/1034 (13.2%)	_		1.22 (0.93-1.61)
Oxygen only	275/1279 (21.5%)	650/2604 (25.0%)	-		0.80 (0.70-0.92)
Invasive mechanical ventilation	94/324 (29.0%)	278/683 (40.7%)	-		0.65 (0.51-0.82)
All participants	454/2104 (21.6%)	1065/4321 (24.6%)	\Diamond		0.83 (0.74-0.92) p<0.001
Trend across three categories:	χ ₁ ² =11.49; p<0.001	0.5 0.75	1 1.5	2	
			Dexamethasone better	Usual care better	

Horby P, et al. https://www.recoverytrial.net/news/low-cost-dexamethasone-reduces-death-by-up-to-one-third-in-hospitalised-patients-with-severe-respiratory-complications-of-covid-19

Summary

- The role of corticosteroids in COVID-19 is controversial
- Low dose dexamethasone was found in one RCT to significantly reduce mortality in COVID-19 patients requiring respiratory support
- No evidence of benefit and concern of potential harm in patients not requiring respiratory support
- Multiple RCTs are ongoing

Corticosteroids

A Review of Pertinent Drug Information for SARS-CoV-2

Khalid Eljaaly, PharmD, MS, BCPS, BCIDP

Assistant Professor/ID Pharmacist, King Abdulaziz University, Jeddah, Saudi Arabia Honorary Research Fellow, University of Arizona, Tucson, AZ, USA

@khalideljaaly

Data as of June 24, 2020

