Interferons (IFN)

A Review of Pertinent Drug Information for SARS-CoV-2

Trang D. Trinh, PharmD, MPH, BCPS, BCIDP Assistant Professor of Clinical Pharmacy University of California, San Francisco Trang.Trinh@ucsf.edu

SOCIETY OF INF DISEASES PHAR

Data as of May 13, 2020

Mechanism of Action

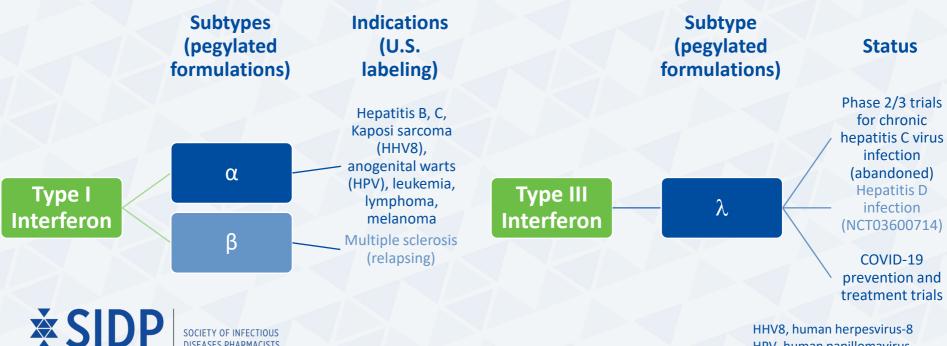
Viruses

- Infect host cells
- SARS-CoV-2 enters through the angiotensinconverting enzyme 2 (ACE-2) receptor

Host cells

- Recognize viral components
- Produce and release interferons (family of cytokines)

Interferons


• Bind to specific plasma membrane receptors on most cell types

IFN, interferon JAK, Janus kinase STAT, signal transducer and activator of transcription Sallard E, et al. Antiviral Research. 2020;178. https://doi.org/10.1016/j.antiviral.2020.104791.

Intracellular events

- Positive: activates JAK-STAT signaling pathway
- Negative: recruits pro-inflammatory mediators (e.g., macrophages)

Interferons Overview

HHV8, human herpesvirus-8 HPV, human papillomavirus

Lexicomp [Internet]. Wolters Kluwer Health, Inc. Available at: http://online.lexi.com. Accessed May 13, 2020.

In Vitro Data

IFN α or β

 β -1a or

β-1b

 IFNβ is a more potent inhibitor of coronaviruses than IFNα¹

• SARS-CoV-2 may be more sensitive to IFN α^2

IFNβ-1a more potent for SARS-CoV³
 IENβ 1b more potent for MEPS

 IFNβ-1b more potent for MERS-CoV^{4,5}

> Protective activity in the lungs^{6,7}

Caveat: SARS-CoV-2 infection weakly induces IFN types I-III expression compared to SARS-CoV (*ex vivo* human lung tissues)⁸

¥SIDP

¹Stockman LJ, et al. PLoS Med. 2006. <u>https://doi.org/10.1371/journal.pmed.0030343</u>. ²Lokugamage KG, et al. BioRxiv. 2020. <u>https://doi.org/10.1101/2020.03.07.982264</u>. ³Hensley LE, et al. Emerg Infect Dis. 2004;10(2):317-319. ⁴Chan JF, et al. J Infect. 2013;67(6):606-16. ⁵Hart BJ, et al. J Gen Virol. 2014;95(3):571-77.

IFN_{β1}

and IFN λ

⁶Bellingan G, et al. Lancet Respir Med. 2(2):98-107.
⁷Kotenko SV, et al. Nat Immunol. 2003;4:69-77.
⁸Chu H, et al. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa410.

In Vitro Data

SARS-CoV

(Ref 1-3)

MERS-CoV

(Ref 4-6)

IFNα and IFNβ-1a/b inhibits virus replication, especially when added to Vero cells (monkey kidney epithelial cells) pre-incubation (i.e., prophylaxis) or alone in Caco2 cells (human intestinal epithelial cell line)

Synergy demonstrated with IFNβ-1a and ribavirin²

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

×SIDP

IFNβ (1b) showed the strongest virus inhibition compared to other IFN tested in Vero cells and Calu-3 cells (human lung epithelial cell line)

Combination with **mycophenolic acid** lowered the EC_{50} of each drug by 1-3 times⁴

Infection **weakly induced** IFN (types 1-3) expression compared to SARS-CoV in *ex vivo* human lung tissues

SARS-CoV-2

(Ref 7)

¹Cinatl J, et al. Lancet. 2003;362(9380):293-94. ²Chen F, et al. J Clin Virol. 2004;31(1):69-75. ³Hensley LE, et al. Emerg Infect Dis. 2004;10(2):317-19. ⁴Chan JF, et al. J Infect. 2013;67(6):606-16. ⁵Hart BJ, et al. J Gen Virol. 2014;95(3):571-77. ⁶Sheahan TP, et al. Nat Commun. 2020;11(1):222. ⁷Chu H, et al. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa410.

In Vivo Animal Data

SARS-CoV MERS-CoV **ARDS** (Ref 1,2) (Ref 3,4) (Ref 5) In mice with ARDS, In rhesus macaques, In macaques, **PEG-IFNα** [‡] **IFN** α -2b with ribavirin \square IFNB-1 virus replication, viral subcutaneously virus replication, antigen expression, and improved survival and moderated host pulmonary damage when restored alveolar response, improved used as prophylaxis; less clinical outcomes macrophage function effective for treatment ARDS, acute respiratory distress syndrome In marmosets, **IFNβ-1b** In aged macaques, **IFNα** ↓ improve clinical, pathology with no effect on radiological, and virus replication; also \mathbb{Q} pathological findings inflammatory gene expression

×SIDP

SOCIETY OF INFECTIOUS

¹Haagmans BL, et al. Nat Med. 2004;10(3):290-93.
 ²Smits SL, et al. PLoS Pathog. 2010;6(2):e1000756.
 ³Falzarano D, et al. Nat Med. 2013;19(10):1313-17.
 ⁴Chan JF, et al. J Infect. 2013;67(6):606-16.
 ⁵Hiruma T, et al. Am J Respir Cell Mol Biol. 2018;59(1):45-55.

SARS-CoV

Clinical Data

Population	Interferon (IFN)	Combination	Outcome(s)
Hospitalized adults with clinical signs and symptoms of SARS in China (N = 190)	 IFNα 3 million units intramuscularly daily Three of four treatment groups received IFNα 	 Fluoroquinolone and azithromycin ± corticosteroid 	 Two out of 30 (6%) patients who definitively received IFN died Unclear how many received IFN in other treatment groups

INTERFERON ALFA INCONCLUSIVE FOR SARS TREATMENT

Zhao Z, et al. J Med Microbiol. 2003;52(8):715-20.

MERS-CoV Observational Data

Study Type	Interferon (IFN)	Combination	Outcome(s)
Case series ¹⁻⁴	IFNα-2a and IFNα-2b subcutaneously weekly for two weeks	Oral ribavirin with loading doses	 8 of 24 (33%) patients died across four case series Delayed time to treatment was observed in patients who died
Small cohorts ^{5,6}			
N = 32 • IFNα-2a: 13 • IFNβ-1a: 11	 IFNα-2a 180 mcg subcutaneously once weekly IFNβ-1a44 mcg subcutaneously three times weekly 	Ribavirin 2 g loading dose, then 600 mg orally every 12 hours	 IFNα-2a: 85% (n = 11) died IFNβ-1a: 64% (n = 7) died
• N = 44	• PEG-IFNα-2a subcutaneously	Oral ribavirin for 8-10 days	 Improved 14-day but not 28-day survival
* SIDP	SOCIETY OF INFECTIOUS DISEASES PHARMACISTS		¹ Al-Tawfiq JA, et al. Int J Infect Dis. 2014;20:42-4 ² Khalid M, et al. Ann Saudi Med. 2014;34(5):396-40 ³ Khalid M, et al. Antivir Ther. 2015;20(1):87-9 ⁴ Khalid I, et al. Respir Care. 2016;61(3):340-34 ⁵ Shalhoub S, et al. J Antimicrob Chemother. 2015;70(7):2129-21: ⁶ Omrani AS, et al. Lancet Infect Dis. 2014;14(11):1090-109

MERS-CoV Observational Data

Study Type	Interferon (IFN)	Combination	Outcome(s)
Retrospective cohort of critically ill patients (N = 349)	 Three treatment groups: PEG-IFNα-2a 180 mcg subcutaneously once weekly x 2 weeks PEG-IFNα-2b 1.5 mcg/kg subcutaneously once weekly x 2 weeks IFNβ-1a 44 mg subcutaneously three times weekly Comparator group without IFN/ribavirin treatment 	Oral ribavirin for 8- 10 days with loading doses	 n = 117 received IFN/ribavirin combination, and among this group 58% of patients received PEG-IFNα-2a Median time to IFN administration was 2 days following ICU admission Unadjusted in-hospital, 28- and 90-day mortality rates were higher in IFN/ribavirin vs. no IFN/ribavirin No difference in 90-day mortality nor in viral clearance in adjusted analyses No differences in safety endpoints

IFN + ORAL RIBAVIRIN COMBINATION INCONCLUSIVE FOR MERS TREATMENT

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

MERS-CoV Observational Data

Study Type	Interferon (IFN)	Combination	Outcome(s)
Case report ¹ (Greece)	PEG-IFNα 180 mcg subcutaneously once weekly for 12 days	 Lopinavir/ritonavir 400/100 mg orally twice daily for 12 days Ribavirin orally for 8 days (2000 mg loading dose followed by 1200 mg every 8 hours) 	 IFN administration was on day 13 following MERS-CoV detection Kidney function improved on day 21, fever resolved on day 22 In-hospital mortality from colon adenocarcinoma (subsequently diagnosed) and septic shock
Case report ² (South Korea)	PEG-IFNα-2a 180 mcg subcutaneously for one dose	 Lopinavir/ritonavir 400/10 mg orally twice daily for 7 days Ribavirin orally for 7 days (2000 mg loading dose followed by 1200 mg every 8 hours) 	Complete recovery and hospital discharge

IFN + LOPINAVIR/R + RIBAVIRIN TRIPLE COMBINATION HIGHLY INCONCLUSIVE FOR MERS-CoV INFECTIONS

Phase II Clinical Trial

Study Design/Population

- Multicenter, prospective, open-label, randomized 2:1
- Hospitalized adults with COVID-19
- Mild to moderate disease (baseline SOFA scores of 0 and NEWS2 scores of ≤2)

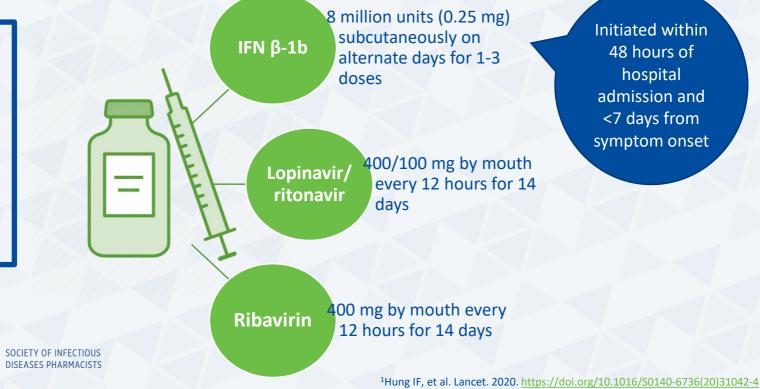
Intervention/Comparator

- Lopinavir/r 400/100 mg by mouth every 12 hours + ribavirin 400 mg by mouth every 12 hours for 14 days + IFN β-1b 8 million IU subcutaneously on alternate days for 1-3 doses depending on time of enrollment (n = 86)
- Lopinavir/r 400/100 mg by mouth every 12 hours for 14 days (n = 41)
- Median time to drug administration was 5 days from symptom onset and combination must be initiated within 48 hours of hospital admission
- IFN was omitted in patients who presented ≥7 days after symptom onset to avoid proinflammatory effects (n = 52 received IFN)

Outcomes

- Time to negative nasopharyngeal swab: median of 6.5 vs. 12.5 days (p < 0.0001) in IFN combination vs. monotherapy group, respectively
- Safety endpoints: no deaths; self-limiting nausea and diarrhea and balanced in both groups
 FECTIOUS

NEWS2, National Early Warning Score 2 SOFA, Sequential Organ Failure Assessment Hospital length of stay was **shorter** in IFNcombination group at 8 vs. 15 days (p = 0.003)


×SIDP

Hung IF, et al. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)31042-4.

Interferon Dosing¹

Expert panel² recommends against the use of interferons for COVID-19 treatment, except in a clinical trial context.

×SIDP

²COVID-19 Treatment Guidelines Panel, National Institutes of Health, https://covid19treatmentguidelines.nih.gov

48 hours of

hospital

<7 days from

Interferon Products

Generic Name	Trade Name	Dosage Forms and Strengths	Administration Route
PEG-interferon α -2a	Pegasys	 Solution for injection: 180 mcg/mL, 180 mcg/0.5 mL, 135 mcg/0.5 mL 	Subcutaneous
Interferon α -2b	Intron A	 Powder for solution: 10, 18, 50 million units Solution for injection: 6 and 10 million units/mL 	Subcutaneous, intramuscular, intravenous, intralesional
PEG-interferon α-2b	PegIntron, Sylatron	 Powder for solution (concentrations after reconstitution): <i>PegIntron</i>: 50, 80, 120, 150 mcg per 0.5 mL <u>Sylatron</u>: 40, 60, 120 mcg per 0.1 mL 	Subcutaneous
Interferon α-n3	Alferon N	Solution for injection: 5 million units/mL	Intralesional
Interferon β-1a	Avonex	Powder for solution: 33 mcgSolution for injection: 30 mcg/0.5 mL	Intramuscular
Interieron p-1a	Rebif	 Solution for injection: 8.8 mcg/0.2 mL, 22 mcg/0.5 mL, 44 mcg/0.5 mL 	Subcutaneous
PEG-interferon β-1a	Plegridy	• Solution for injection: 63, 94, 125 mcg/0.5 mL	Subcutaneous
Interferon β-1b	Betaseron, Extavia	Powder for solution: 0.3 mg	Subcutaneous

Lexicomp [Internet]. Wolters Kluwer Health, Inc. Available at: http://online.lexi.com. Accessed May 13, 2020.

Ongoing Clinical Trials

Prevention in medical staff (NCT04320238) Recruiting

- Phase 3 single-center, open-label non-randomized trial
- Interferon α-1b intranasally 2-3 drops per nostril four times daily (low-risk) vs. interferon α-1b intranasally and thymosin α1 subcutaneously once weekly (high-risk)
- 1° outcome: new onset COVID-19 (assessed up to 6 weeks)

Prevention in high-risk patients (NCT04344600) Not yet recruiting

- Phase 2 single-center, single-blind (participant), placebo-controlled, randomized trial
- <u>PEG-IFN λ–1a</u> 180 mcg subcutaneously once weekly x 2 doses vs. placebo
- 1° outcome: proportion with no SARS-CoV-2 infection (up to 28 days)

¥SIDP

CIETY OF INFECTIOUS SEASES PHARMACISTS

ClinicalTrials.gov [Internet]. U.S. National Library of Medicine. Available at: https://clinicaltrials.gov. Accessed May 13, 2020.

Ongoing Clinical Trials

Mild to moderate COVID-19 (ChiCTR2000029387)¹ Recruiting

- Open-label, single-center, randomized trial
- Interferon α-1b 5 million units (50 mcg/dose) <u>atomized inhalation</u> twice daily with either ribavirin or lopinavir/r or ribavirin and lopinavir/r for 14 days
- 1° outcome: two consecutive RNA results SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

×SIDP

Moderate to severe COVID-19 (NCT04343768)² Completed

- Phase 2 open-label randomized trial
- Interferon β-1a or 1b (unspecified route) with hydroxychloroquine and lopinavir/r vs. hydroxychloroquine and lopinavir/r
- 1° outcome: time to clinical improvement defined by WHO COVID-19 R&D (7-point ordinal scale)

Hospitalized COVID-19 (NCT04350281)² Recruiting

- Phase 2 open-label randomized trial
- Interferon β-1b 0.25 mg subcutaneously once daily with hydroxychloroquine on days 1-3 and standard of care vs. hydroxychloroquine and standard of care
- 1° outcome: time to negative nasopharyngeal RT-PCR

¹Zeng Y, et al. Chin Med J (Engl). 2020;133(9):1132-34. <u>https://doi.org/10.1097/CM9.00000000000000090</u>. ²ClinicalTrials.gov [Internet]. U.S. National Library of Medicine. Available at: <u>https://clinicaltrials.gov</u>. Accessed May 13, 2020.

Ongoing Clinical Trials

Hospitalized COVID-19 (NCT04315948)¹ Recruiting

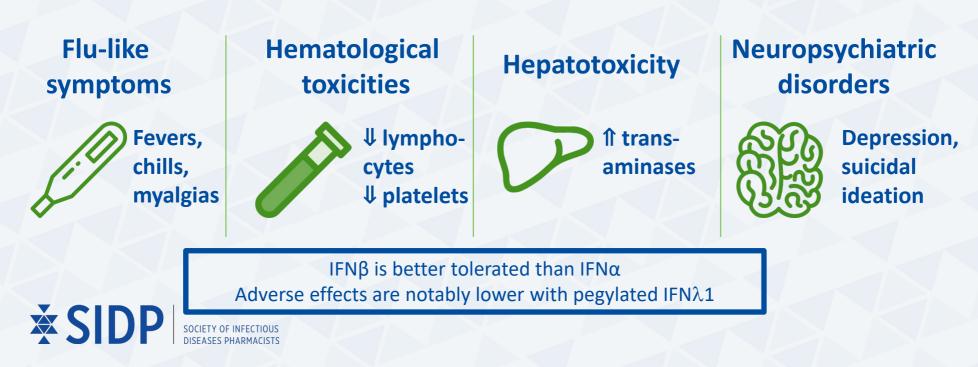
World Health Organization

- Phase 3 multicenter, adaptive, open-label randomized trial
- Interferon β-1a 44 mcg subcutaneously on days 1, 3, 6 with lopinavir/r vs. three other experimental groups and standard of care (control)
- 1° outcome: clinical status at day 15 (7-point ordinal scale defined by WHO COVID-19 R&D)

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

Hospitalized COVID-19 (NCT04343976)¹ Not yet recruiting

- Phase 2 single-center, open-label, randomized trial
- <u>PEG-IFN λ</u> 180 mcg subcutaneously (frequency unspecified) vs. standard of care supportive treatment
- 1° outcome: undetectable SARS-CoV-2 PCR test result at day 7


Hospitalized MERS-CoV (NCT02845843)² Recruiting

•Phase 2/3 multicenter, placebo-controlled, doubleblind randomized trial

•Interferon β -1b 0.25 mg subcutaneously every other day with lopinavir/r for 14 days vs. placebo

•1° outcome: 90-day mortality

Adverse Effects

Lexicomp [Internet]. Wolters Kluwer Health, Inc. Available at: http://online.lexi.com. Accessed May 13, 2020.

Special Considerations

Drug interactions: potential for added toxicity with other immunomodulators and chemotherapies (avoid with cladribine)

Pregnancy: registries data have not observed an increased risk or pattern of major birth defects, preterm births, or decreased birth weight

Pediatrics: some (limited) data for respiratory viral infection treatment with topical/aerosolized IFN

SIDP SOCI

OCIETY OF INFECTIOUS SEASES PHARMACISTS

Lexicomp [Internet]. Wolters Kluwer Health, Inc. Available at: http://online.lexi.com. Accessed May 13, 2020.

Clinical Pearls

Benefits

Risks

Pro-inflammatory response with delayed administration

Serious adverse effects

Limited COVID-19 clinical evidence

May shorten hospital length of stay May shorten viral shedding duration

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

Summary

 Interferons for COVID-19 treatment is only to be given in a clinical trial context

• Current clinical evidence for COVID-19 treatment is one phase 2 randomized trial in adults with mild to moderate disease

 Additional trials are under way and needed to determine whether early interferon initiation in combination with other antivirals improves COVID-19 clinical outcomes

SOCIETY OF INFECTIOUS DISEASES PHARMACISTS

Interferons (IFN)

A Review of Pertinent Drug Information for SARS-CoV-2

Trang D. Trinh, PharmD, MPH, BCPS, BCIDP Assistant Professor of Clinical Pharmacy University of California, San Francisco Trang.Trinh@ucsf.edu

SOCIETY OF INF DISEASES PHAR

Data as of May 13, 2020

