Virus released from cell after assembly

Antigen-presenting cells engulf virus

T-helper cells are activated by viral peptides displayed on antigen-presenting cells

Cytotoxic T cells enabled to identify and destroy infected cells

B cells enabled to create antibodies that block virus from infecting cells

APC: antigen-presenting cells
Previous Vaccine Timeline

- **Exploratory**
 - >4 years

- **Preclinical**
 - 5-7 years

- **Clinical**
 - BLA

- **Review**
 - 1-2 years

IND: Investigational new drug
BLA: biologics license application

SARS-CoV-2 Vaccine Timeline

Exploratory Preclinical

Clinical
- Phase I
- Phase II
- Phase III

Production

Review

IND: Investigational new drug
BLA: Biologics license application

10 months to 1.5 years total.
SARS-CoV-2 Vaccine Development

1. Robust immune response
2. Potent T-lymphocyte immunity
3. Limit serious adverse events

Global Vaccine Outlook

- Phase 1: 37
- Phase 2: 27
- Phase 3: 20
- Authorized: 6
- Approved: 4*

>170 in preclinical development
>60 in clinical trials on humans
2 Currently approved via EUA pathway in the US

*2 EUA approved in US

Updated as of February 14, 2021
The New York Times. Coronavirus Vaccine Tracker

EUA: Emergency Use Authorization
SARS-CoV-2 Vaccine Platforms

- **Traditional approaches**
- **Recently licensed approaches**
- **Novel approaches**

<table>
<thead>
<tr>
<th>Platform</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live attenuated or whole inactivated vaccines</td>
<td>[Image of live attenuated or whole inactivated vaccines]</td>
</tr>
<tr>
<td>Genetic-code vaccines</td>
<td>[Image of genetic-code vaccines]</td>
</tr>
<tr>
<td>Viral vector vaccines</td>
<td>[Image of viral vector vaccines]</td>
</tr>
<tr>
<td>Protein-based vaccines</td>
<td>[Image of protein-based vaccines]</td>
</tr>
</tbody>
</table>
Current SARS-CoV-2 Vaccine Landscape By Platform

Candidate Vaccines as of February 12, 2021

- **Protein subunit**: 33%
- **Viral Vector (non-replicating)**: 15%
- **DNA**: 12%
- **Inactivated Virus**: 15%
- **RNA**: 11%
- **Viral Vector (replicating)**: 5%
- **Virus Like Particle**: 3%
- **VVr + Antigen Presenting Cell**: 3%
- **VVnr + Antigen Presenting Cell**: 1%

VVr: Viral Vector replicating
VVnr: Viral Vector non-replication

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
Vaccine Platform Overview

<table>
<thead>
<tr>
<th>MOA</th>
<th>Live Attenuated</th>
<th>Inactivated</th>
<th>Viral vector</th>
<th>Protein-subunit</th>
<th>Genetic-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Weakened version of virus that replicates to extent without causing disease</td>
<td>• Inactivated version of actual virus grown and chemically inactivated</td>
<td>• Based on another virus with spike protein which has been disabled from replication</td>
<td>• Viral subunits expressed via various cell lines to stimulate immune response</td>
<td>• Uses DNA or RNA to create antigens for immune system to target</td>
<td></td>
</tr>
</tbody>
</table>

Pros
- Immune response has broad target range
- Given intranasally
- Familiar, proven technology
- Produced without handling live virus
- Good immune response
- High immune response
- Prime-boost regimens
- RBD-based prone to impact of antigenic drift
- Experience producing
- Large scale production

Cons
- Time-consuming to grow
- Specific facilities for production
- Safety concerns
- Partial neutralization by existing immunity
- Prime-boost regimens
- Spike protein hard to express
- Relatively new technology
- Stability issues

Vaccine Candidates
- Codagenix
- Indian Immunologicals Ltd.
- Sinovac
- Sinopharm
- AstraZeneca
- CanSino Biologics
- Johnson & Johnson
- Novavax
- AdaptVac
- Moderna
- Pfizer-BioNTech

MOA: Mechanism of Action

Vaccine Platform Overview

<table>
<thead>
<tr>
<th>MOA: Mechanism of Action</th>
<th>Live Attenuated</th>
<th>Inactivated</th>
<th>Viral vector</th>
<th>Protein-subunit</th>
<th>Genetic-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOA</td>
<td>• Weakened version of virus that replicates to extent without causing disease</td>
<td>• Inactivated version of actual virus grown and chemically inactivated</td>
<td>• Based on another virus with spike protein which has been disabled from replication</td>
<td>• Viral subunits expressed via various cell lines to stimulate immune response</td>
<td>• Uses DNA or RNA to create antigens for immune system to target</td>
</tr>
</tbody>
</table>

Pros	• Immune response has broad target range	• Immune response has broad target range	• Produced without handling live virus	• Produced without handling live virus	• Easy and quick to design
	• Given intranasally	• Familiar, proven technology	• Familiar, proven technology	• Experience producing	• Large scale production
	• Familiar, proven technology	• Good immune response			

| **Cons** | • Time-consuming to grow | • Time-consuming to grow | • Partial neutralization by existing immunity | • Spike protein hard to express | • Relatively new technology |
| | • Specific facilities for production | • Specific facilities for production | • Prime-boost regimens | • RBD-based prone to impact of antigenic drift | • Stability issues |

| **Vaccine Candidates** | • Codagenix | • Sinovac | • AstraZeneca | • Novavax | • Moderna |
| | • Indian Immunologicals Ltd. | • Sinopharm | • CanSino Biologics | • AdaptVac | • Pfizer-BioNtech |

Vaccine Platform Overview

<table>
<thead>
<tr>
<th>MOA</th>
<th>Live Attenuated</th>
<th>Inactivated</th>
<th>Viral vector</th>
<th>Protein-subunit</th>
<th>Genetic-code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Weakened version of virus that replicates to extent without causing disease</td>
<td>• Inactivated version of actual virus grown and chemically inactivated</td>
<td>• Based on another virus with spike protein which has been disabled from replication</td>
<td>• Viral subunits expressed via various cell lines to stimulate immune response</td>
<td>• Uses DNA or RNA to create antigens for immune system to target</td>
</tr>
</tbody>
</table>

Pros	• Immune response has broad target range	• Immune response has broad target range	• Produced without handling live virus	• Produced without handling live virus	• Easy and quick to design
	• Given intranasally	• Familiar, proven technology	• Familiar, proven technology	• Experience producing	• Large scale production
	• Familiar, proven technology	• Good immune response			
	• Time-consuming to grow	• Time-consuming to grow	• Partial neutralization by existing immunity	• Spike protein hard to express	• Relatively new technology
	• Specific facilities for production	• Specific facilities for production	• Prime-boost regimens	• RBD-based prone to impact of antigenic drift	• Stability issues
Cons	• Safety concerns				
	• Partial neutralization by existing immunity				
	• Prime-boost regimens				
	• Spike protein hard to express				
	• RBD-based prone to impact of antigenic drift				
	• Relatively new technology				
	• Stability issues				
	• Safety concerns				

Vaccine Candidates	Codagenix	Sinovac	AstraZeneca	Novavax	Moderna
	Indian Immunologicals Ltd.	Sinopharm	CanSino Biologics	AdaptVac	Pfizer-BioNtech
			Johnson & Johnson		

MOA: Mechanism of Action

Vaccine Platform Overview

<table>
<thead>
<tr>
<th>MOA</th>
<th>Live Attenuated</th>
<th>Inactivated</th>
<th>Viral vector</th>
<th>Protein-subunit</th>
<th>Genetic-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOA</td>
<td>• Weakened version of virus that replicates to extent without causing disease</td>
<td>• Inactivated version of actual virus grown and chemically inactivated</td>
<td>• Based on another virus with spike protein which has been disabled from replication</td>
<td>• Viral subunits expressed via various cell lines to stimulate immune response</td>
<td>• Uses DNA or RNA to create antigens for immune system to target</td>
</tr>
<tr>
<td>Pros</td>
<td>• Immune response has broad target range</td>
<td>• Immune response has broad target range</td>
<td>• Produced without handling live virus</td>
<td>• Produced without handling live virus</td>
<td>• Easy and quick to design</td>
</tr>
<tr>
<td>Cons</td>
<td>• Time-consuming to grow</td>
<td>• Time-consuming to grow</td>
<td>• Partial neutralization by existing immunity</td>
<td>• Spike protein hard to express</td>
<td>• Relatively new technology</td>
</tr>
<tr>
<td>Vaccine Candidates</td>
<td>• Codagenix</td>
<td>• Sinovac</td>
<td>• AstraZeneca</td>
<td>• Novavax</td>
<td>• Moderna</td>
</tr>
</tbody>
</table>

MOA: Mechanism of Action
RBD: Receptor binding domain
Vaccine Platform Overview

<table>
<thead>
<tr>
<th>MOA</th>
<th>Live Attenuated</th>
<th>Inactivated</th>
<th>Viral vector</th>
<th>Protein-subunit</th>
<th>Genetic-code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOA</td>
<td>• Weakened version of virus that replicates to extent without causing disease</td>
<td>• Inactivated version of actual virus grown and chemically inactivated</td>
<td>• Based on another virus with spike protein which has been disabled from replication</td>
<td>• Viral subunits expressed via various cell lines to stimulate immune response</td>
<td>• Uses DNA or RNA to create antigens for immune system to target</td>
</tr>
<tr>
<td>Pros</td>
<td>• Immune response has broad target range</td>
<td>• Immune response has broad target range</td>
<td>• Produced without handling live virus</td>
<td>• Produced without handling live virus</td>
<td>• Easy and quick to design</td>
</tr>
<tr>
<td>Cons</td>
<td>• Time-consuming to grow</td>
<td>• Time-consuming to grow</td>
<td>• Partial neutralization by existing immunity</td>
<td>• Spike protein hard to express</td>
<td>• Relatively new technology</td>
</tr>
<tr>
<td>Vaccine Candidates</td>
<td>• Codagenix</td>
<td>• Sinovac</td>
<td>• AstraZeneca</td>
<td>• Novavax</td>
<td>• Moderna</td>
</tr>
<tr>
<td></td>
<td>• Indian Immunologicals Ltd.</td>
<td>• Sinopharm</td>
<td>• CanSino Biologics</td>
<td>• AdaptVac</td>
<td>• Pfizer-BioNtech</td>
</tr>
</tbody>
</table>

MOA: Mechanism of Action

Pertinent SARS-CoV-2 Vaccine Candidates

<table>
<thead>
<tr>
<th>Candidate Name</th>
<th>Vaccine Platform</th>
<th>Sponsor</th>
<th>Clinical Trial Phase</th>
<th>Dosing</th>
<th>Storage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNT162b2</td>
<td>mRNA-based</td>
<td>Pfizer-BioNtech</td>
<td>EUA</td>
<td>2 doses (d0, d21)</td>
<td>-70°C</td>
<td>$20/dose</td>
</tr>
<tr>
<td>mRNA-1273</td>
<td>mRNA-based</td>
<td>Moderna</td>
<td>EUA</td>
<td>2 doses (d0, d28)</td>
<td>-20°C</td>
<td>$32-37/dose</td>
</tr>
<tr>
<td>AZD1222</td>
<td>Non-replicating viral vector</td>
<td>AstraZeneca</td>
<td>Phase 3</td>
<td>2 doses (d0, d28)</td>
<td>2-8°C</td>
<td>$3-4/dose</td>
</tr>
<tr>
<td>Ad26.COV2.S</td>
<td>Non-replicating viral vector</td>
<td>Johnson&Johnson</td>
<td>Phase 3</td>
<td>1 dose</td>
<td>2-8°C</td>
<td>$10/dose</td>
</tr>
<tr>
<td>NVX-CoV2373</td>
<td>Recombinant protein</td>
<td>Novavax</td>
<td>Phase 3</td>
<td>2 doses (d0, d21)</td>
<td>2-8°C</td>
<td>$16/dose</td>
</tr>
</tbody>
</table>

EUA: Emergency Use Authorization
Current and Future Challenges

Under-represented populations
- Pregnant and breastfeeding women, immunocompromised, diverse race and ethnicities

Vaccine Hesitancy
- Willingness to get COVID-19 vaccination ~63%

Phase 3 enrollment and long-term outcomes
- Many frontline workers involved in phase 3 trials → impact long term outcomes

Equitable Administration
- On top of number of vaccines, storage requirements and cost will significantly impact certain areas of the world

EUA Vaccine FAQs

<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons with a History of SARS-CoV-2 Infection</td>
<td>Vaccination regardless of prior infection</td>
</tr>
<tr>
<td>Persons with Known Current SARS-CoV-2 Infection</td>
<td>Defer vaccination until recovery and isolation discontinued</td>
</tr>
<tr>
<td>Persons Previously Received Passive Antibody Therapy</td>
<td>No data
Defer vaccination for at least 90 days to avoid vaccine interference</td>
</tr>
<tr>
<td>Immunocompromised Persons</td>
<td>No Data
Can receive vaccination unless otherwise contraindicated</td>
</tr>
<tr>
<td>Pregnant or Breastfeeding Persons</td>
<td>No data
May choose to be vaccinated
Discussion with healthcare provider</td>
</tr>
<tr>
<td>Public Health Recommendations</td>
<td>Protection not immediate or 100%
Continue to follow current distancing and protection guidance</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Severe reaction after previous dose of vaccine
Immediate reaction to previous dose of vaccine or any of its components
Immediate allergic reaction to polysorbate</td>
</tr>
</tbody>
</table>

For more information, visit https://www.cdc.gov/vaccines/covid-19/downloads/pfizer-biontech-vaccine-what-Clinicians-need-to-know.pdf
• Registries for Vaccine and Breastfeeding
 • Human Breastmilk Study
 • Icahn School of Medicine at Mount Sinai
 • Investigator: Dr. Rebecca L.R. Powell
 • To sign up email: covid19humanmilkstudy@gmail.com
 • Mommy’s Milk Research Study
 • University of California at San Diego
 • To sign up email: milkstudy@health.ucsd.edu

• Registries for Pregnancy
 • C-VIPER
 • https://corona.pregistry.com/
 • Registration open February 8, 2021 → register online (NCT NCT04705116)

NEW! NCT04754594 → phase 2/3 randomized placebo-controlled trial for BNT162b2 in pregnant women
V-Safe is a smartphone app that uses texts and surveys to provide check-ins following vaccination

- Easiest way to tell the CDC of any side effects that are encountered following vaccination
- It will also set a reminder for the 2nd vaccination in the series!

You will need a smart phone and your SARS-CoV-2 vaccination information to register and use v-safe

Instructions can be found at:
V-Safe After Vaccination

<table>
<thead>
<tr>
<th>People receiving 1 or more doses in the United States*</th>
<th>Pfizer-BioNTech</th>
<th>Moderna</th>
<th>All COVID-19 vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12,153,536</td>
<td>9,689,497</td>
<td>21,843,033</td>
</tr>
<tr>
<td>Registrants completing at least 1 v-safe health check-in†</td>
<td>997,042</td>
<td>1,083,174</td>
<td>2,080,216</td>
</tr>
<tr>
<td>Pregnancies reported to v-safe</td>
<td>8,633</td>
<td>6,498</td>
<td>15,131</td>
</tr>
</tbody>
</table>

*Data as of 1/24/2021
†Data as of 1/20/2021

- Most frequently reported reactions following vaccination: pain, fatigue, headache, myalgia
- Rates mostly consistent across both vaccines, numerically Moderna slightly higher reactions reported

Safety Updates

• Reports of deaths following COVID-19 vaccination in community dwelling adults aged <65 years
 • **Expected sudden cardiac death count**: 168 deaths (based on estimated background rate of sudden cardiac death = 29.6/100,000 person-years)
 • **Reported VAERS sudden cardiac death count following COVID vaccination**: 18 deaths

• Reports of deaths following COVID-19 vaccination in LTCF residents to VAERS
 • Assessment after excluding residents with positive SARS-CoV-2 test within 20 days prior 7-day post vaccination window
 • Mortality lower among vaccinated vs unvaccinated within the same facilities
 • Short term mortality likely unrelated to COVID-19 vaccination in skilled nursing facility residents

Useful Links

• CDC Website
 • https://www.cdc.gov/vaccines/covid-19/index.html

• CDC Vaccine Communication Toolkit
 • https://www.cdc.gov/vaccines/covid-19/health-systems-communication-toolkit.html

• CDC Guidance for Infection Prevention Considerations Post Vaccination

• COVID-19 Real-Time Learning Network (CDC and IDSA)
 • https://www.idsociety.org/covid-19-real-time-learning-network/

1. Get Vaccinated
2. Tell Others Why
3. Build the Confidence
SARS-CoV-2 Vaccines

General Information

A Review of Pertinent Drug Information for SARS-CoV-2

Jeannette Bouchard, PharmD
Infectious Diseases/Antimicrobial Stewardship Clinical Pharmacy Specialist
WakeMed Health & Hospital System, Raleigh, NC
jebouchard@wakemed.org
@jlbouchard001
February 16, 2020